Exam April 2018, questions and answers

Linear Algebra (تيزريب ةعماج)

Birzeit University
 Mathematics Department
 Math 234

Second Exam-answers
Student Name: \qquad Number:
Instructors and Sections:
Maher Abdallatif \qquad (1), Mohammad Saleh

Ala Talahmeh
(3), Hasan Yousef

Q1 (36 points) Answer the following statements by true or false:

(1) $(\ldots \ldots, F)$ The coordinate vector of $2+2 x$ with respect to the basis $[2 x, 4]$ is $(1,2)^{t}$
(2) $(\ldots \ldots T)$ If two matrices are row equivalent, they must have the same null space.
(3) $(\ldots \ldots T)$ If A is an $n \times n$ invertible matrix, then the linear system $A X=b$ is consistent for every $b \in R^{n}$.
(4) $(\ldots \ldots . T)$ Any subset of a vector space that does not contain the zero vector is not a subspace.
(5) $(\ldots \ldots . T)$ The set $S=\{f \in C[-1,1]: f(0)=0\}$ is a subspace of $V=C[-1,1]$
(6) $(\ldots \ldots T) S=\left\{A \in R^{2 \times 2}: a_{11}=0\right\}$ is a subspace of $V=R^{2 \times 2}$
(7) $(\ldots \ldots T) S=\left\{v=(x, y) \in R^{2}: x+y=1\right\}$ is not a subspace of $V=R^{2}$
(8) $(\ldots \ldots, F)$ Any subset of a vector space that contains the zero vector is a subspace.
(9) $(\ldots \ldots T)$ If $v_{1}, v_{2}, \ldots, v_{n}$ span a vector space V and v_{n} is a linear combination of v_{1}, \ldots, v_{n-1}, then $V=\operatorname{Span}\left\{v_{1}, \ldots, v_{n-1}\right\}$.
(10) $(\ldots \ldots T)$ If two none zero vectors in a vector space V are linearly dependent, then one of them is a scalar multiple of the other.
(11) $(\ldots \ldots . T)$ The vectors $(0,0,0)^{T},(2,3,1)^{T},(2,-5,3)^{T}$ are linearly dependent.
(12) $(\ldots \ldots T)$ If n vectors span a vector space V, then a collection of $m>n$ vectors in V is linearly dependent.
(13) $(\ldots \ldots T)$ If V is a vector space with dimension $n>0$, then any set of $m<n$ vectors in V does not span V.
(14) $(\ldots \ldots F)$ The set $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of a vector space V if every vector in V is a linear combination of the set S.
(15) $(\ldots \ldots . F)$ If $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent, then $v_{1} \in \operatorname{Span}\left\{v_{2}, \ldots, v_{n}\right\}$.
(16) $(\ldots \ldots F)$ A basis for the subspace $S=\left\{(a+b+2 c, a+2 b+4 c, b+2 c)^{T}, a, b, c \in R\right\}$ is $\left\{(1,1,0)^{T},(1,2,1)^{T},(1,2,1)^{T}\right\}$
(17) $(\ldots \ldots . F)$ A basis for the subspace $S=\left\{f \in P_{3}: f(0)=0\right\}$ is $\left\{x^{2}+x\right\}$
(18) $(\ldots \ldots T)$ The set of vectors $x, x-1, x^{2}-x-1, \sin x, e^{x}$ are linearly independent
(1) Let u and v be distinct (not equal) vectors in R^{n}, and let B be a basis for R^{n}. Then
(a) the coordinate vector of u with respect to B never equals u
(b) the coordinate vector of v with respect to B equals v
(c) the coordinate vector of $u+v$ with respect to B equals the sum of the coordinate vector of u and the coordinate vector of v with respect to B. T
(d) None
(2) Let V and W be subspaces of R^{n} such that V is contained in W. Then
(a) V and W may have the same dimension even though they need not be equal
(b) every subset of W that spans W contains a set that spans V. T
(c) every basis for V can be extended to a basis for W. T
(d) None
(3) For any finite n-dimensional vector space V with a basis B
(a) The coordinate vector of any vector v in V is in R^{n}. T
(b) A subspace of V is a subset of V that contains a zero vector and is closed under the operation of addition
(c) The set of nonzero vectors in V is a subspace of V
(d) None
(4) For any vector space V,
(a) If V is finite-dimensional, then V is a subspace of R^{n} for some positive integer n
(b) If V is infinite-dimensional, then every infinite subset of V is linearly independent
(c) If V is finite-dimensional, then no infinite subset of V is linearly independent. T
(d) None
(5) An $n \times n$ matrix A is invertible if
(a) The columns of A are li
(b) The rows of A are li
(c) $N(A)=\{0\}$
(d) all of the above. T
(6) Let S be a finite subset of a subspace W of R^{n}. Then S is a basis for W if
(a) S is linearly independent
(b) S spans W
(c) every vector in W is a linear combination of vectors in S
(d) None. T
(7) Suppose that W is a subspace of R^{n}. Then
(a) the dimension of W is greater than n
(b) every basis of R^{n} contains a basis of W
(c) every linearly independent subset of W has at most n vectors. T
(d) None
(8) One of the following is not a subspace in the corresponding space
(a) $S=\{f \in C(R): f(1)=0\}, V=C(R)$
(b) $S=\left\{A \in R^{2 \times 2}: a_{11}=0\right\}, V=R^{2 \times 2}$
(c) $S=\left\{v=(x, y) \in R^{2}: x+y=1\right\}, V=R^{2}$. T
(d) $S=\left\{v=(x, y) \in R^{2}: x+y=0\right\}, V=R^{2}$
(9) For an finite dimensional vector space V,
(a) every infinite subset of V spans V
(b) every infinite subset of V is linearly independent.
(c) every finite subset of V can not span V.
(d) None. T
(10) The dimension of the null space of $\left(\begin{array}{ccccc}1 & 1 & 2 & 1 & 4 \\ 2 & -1 & 2 & -1 & 6 \\ 3 & 0 & 4 & 0 & 10\end{array}\right)$ is
(a) 0
(b) 1
(c) 2
(d) $3 . \mathrm{T}$
(11) One of the following set of vectors are linearly independent
(a) $(1,1,2,1,4),(2,2,4,2,8)$
(b) $(1,1,2,1,4),(2,-1,2,-1,6),(0,0,0,0,0)$
(c) $x, 1, x^{2}+1$. T
(d) $(1,2,3),(0,1,0),(0,0,1),(1,1,1)$
(12) The dimension of the subspace $S=\left\{(a+b+2 c, a+2 b+4 c, b+2 c)^{T}, a, b, c \in R\right\}$ is
(a) 4
(b) 1
(c) $2 . \mathrm{T}$
(d) 3
(13) A basis for the vector space spanned by $1-x-x^{2}, 1+x+x^{2}, 2-x, 1-x$ from this set of vectors is
(a) $1-x-x^{2}, 1+x+x^{2}, 2-x$. T
(b) $1-x-x^{2}, 1+x+x^{2}$
(c) $1-x-x^{2}, 1+x+x^{2}, 2-x, 1-x$
(d) $1-x-x^{2}, 1-x$

Q3 (12 points):(a) If U, W are subspaces of a vector space V. Show that $U \cap W$ is a subspace of V
$1.0 \in U \cap W$, since $0 \in U$, and $0 \in W$. So $U \cap W \neq \phi$. (2 points)
2. Let $x, y \in U \cap W$. Then $x, y \in U$, and $x, y \in W$. since U, W are subspaces of V, so $x+y \in U$, and $x+y \in W$. So, $x+y \in U \cap W$. (2 points)
3. Let $x \in U \cap W, \alpha \in R$. So $x \in U$, and $x \in W, \alpha \in R$. Since U, W are subspaces of V, so $\alpha x \in U$, and $\alpha x \in W$. So, $\alpha x \in U \cap W$. (2 points)
so, $U \cap W$ is a subspace of V
(b) Let $S=\left\{(0, a)^{t}: a \in R\right\}$. Show that S is a subspace of R^{2}.
$1.0 \in S$, by taking $a=0$. So $S \neq \phi$. (2 points)
2. Let $x, y \in S$, say, $x=(0, a)^{t}, y=(0, b)^{t}: a, b \in R$. Then $x+y=(0, a+b)^{t}: a+b \in R$, and so $x+y \in S$. (2 points)
3. Let $x=(0, a)^{t}: a \in R, \alpha \in R$. So $\alpha x=(0, \alpha a)^{t} \in S$. So, S is a subspace of R^{2}.. points)
Q4: (15 points)

1. Let $V=P_{3}$, and let $U=\{f \in V: f(0)=f(1)=0\}$. Find a basis for U

Let $U=\left\{f \in V ; f(x)=a x^{2}+b x+c, a, b, c \in R, f(0)=f(1)=0\right\}$. So, $c=0$, and $a+b+c=0$, so $b=-a$.(3 points). Thus, $U=\left\{a x^{2}-a x, a \in R\right\}$. So a basis for U is $x^{2}-x$. (2 points)
2. Let $V=R^{2 \times 2}$, and let $S=\left\{A \in V: A^{t}=A\right\}$. Find a basis for S.
$S=\left\{A \in V: A^{t}=A\right\}, A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. (2 points) A basis for S is $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \cdot(3$ points $)$
3. Let $V=P_{2}, B=[1-x, 2+x], F=[1+2 x, 2-3 x]$. Find the transition matrix S from B into F
U_{1} the transition matrix from $B=[1-x, 2+x]$ into $E=[1, x]$ is $\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right) \cdot(\mathbf{2}$ points $)$
U_{2} the transition matrix from $F=[1+2 x, 2-3 x]$ into $E=[1, x]$ is $\left(\begin{array}{cc}1 & 2 \\ 2 & -3\end{array}\right)$.
points) So the transition matrix from B into F is $U=U_{2}^{-1} U_{1}=\frac{1}{7}\left(\begin{array}{ll}1 & 8 \\ 3 & 3\end{array}\right)$. (1 points) Or $U=\left([1-x]_{F},[2+x]_{F}\right)$ (1 points), (2 points) $[1-x]_{F},[2+x]_{F}$ (2 points)

Q5: (10 points)

1. Let A be an $m \times n$ matrix with $N(A) \neq\{0\}$. If the system $A x=b$ is consistent, prove that $A x=b$ has infinitely many solutions.

Since $N(A) \neq\{0\}$, so $A x=0$ has a free variable and so $A x=b$ has a free variable. (3 points) And since it is consistent, so it has infinitely many solutions. (2 points)

Or, the solutions of $A x=b$ are of the form $x_{0}+t z, t \in R$, where x_{0} is a solution of $A x=b$, and $z \in N(A)$
2. Let $V=R$ be the set of real numbers with usual addition and multiplication. Show that the only subspaces of V are $\{\mathbf{0}\}$, and R.

Let $S \neq\{\mathbf{0}\}$. So there exists $x \in S, x \neq 0$ (2 points). So $\frac{1}{x} \in R$, (1 points)and so $\frac{1}{x} x=1 \in S$ (1 points). So if $a \in R$, then $a .1=a \in S$. (1 points). So $S=R$

