

Exam April 2018, questions and answers

Linear Algebra (تيزريب ةعماج)

Birzeit University Mathematics Department Math 234

Second Exam-answers

Q1 (36 points) Answer the following statements by true or false:

- (1) (\ldots, F) The coordinate vector of 2 + 2x with respect to the basis [2x, 4] is $(1, 2)^t$
- (2) (\ldots, T) If two matrices are row equivalent, they must have the same null space.
- (3) (\dots, T) If A is an $n \times n$ invertible matrix, then the linear system AX = b is consistent for every $b \in \mathbb{R}^n$.
- (4) (\dots, T) Any subset of a vector space that does not contain the zero vector is not a subspace.
- (5) (\dots, T) The set $S = \{f \in C[-1, 1] : f(0) = 0\}$ is a subspace of V = C[-1, 1]
- (6) (\ldots, T) $S = \{A \in \mathbb{R}^{2 \times 2} : a_{11} = 0\}$ is a subspace of $V = \mathbb{R}^{2 \times 2}$
- (7) (\dots, T) $S = \{v = (x, y) \in \mathbb{R}^2 : x + y = 1\}$ is not a subspace of $V = \mathbb{R}^2$
- (8) (\ldots, F) Any subset of a vector space that contains the zero vector is a subspace.
- (9) (\dots, T) If v_1, v_2, \dots, v_n span a vector space V and v_n is a linear combination of v_1, \dots, v_{n-1} , then $V = Span\{v_1, \dots, v_{n-1}\}$.
- (10) (\dots, T) If two none zero vectors in a vector space V are linearly dependent, then one of them is a scalar multiple of the other.
- (11) (\ldots, T) The vectors $(0, 0, 0)^T, (2, 3, 1)^T, (2, -5, 3)^T$ are linearly dependent.
- (12) (\dots, T) If n vectors span a vector space V, then a collection of m > n vectors in V is linearly dependent.
- (13) (\dots, T) If V is a vector space with dimension n > 0, then any set of m < n vectors in V does not span V.
- (14) (\ldots, F) The set $S = \{v_1, \ldots, v_n\}$ is a basis of a vector space V if every vector in V is a linear combination of the set S.
- (15) (\ldots, F) If v_1, v_2, \ldots, v_n are linearly dependent, then $v_1 \in Span\{v_2, \ldots, v_n\}$.
- (16) (\ldots, F) A basis for the subspace $S = \{(a+b+2c, a+2b+4c, b+2c)^T, a, b, c \in R\}$ is $\{(1,1,0)^T, (1,2,1)^T, (1,2,1)^T\}$
- (17) (\dots, F) A basis for the subspace $S = \{f \in P_3 : f(0) = 0\}$ is $\{x^2 + x\}$
- (18) (\ldots, T) The set of vectors $x, x 1, x^2 x 1, sinx, e^x$ are linearly independent

Q2:(39 points) Choose the correct answer.

- (1) Let u and v be distinct (not equal)vectors in \mathbb{R}^n , and let B be a basis for \mathbb{R}^n . Then
- (a) the coordinate vector of u with respect to B never equals u
- (b) the coordinate vector of v with respect to B equals v
- (c) the coordinate vector of u + v with respect to B equals the sum of the coordinate vector of u and the coordinate vector of v with respect to B. T
- (d) None
- (2) Let V and W be subspaces of \mathbb{R}^n such that V is contained in W. Then
- (a) V and W may have the same dimension even though they need not be equal
- (b) every subset of W that spans W contains a set that spans V. T
- (c) every basis for V can be extended to a basis for W. T
- (d) None
- (3) For any finite n-dimensional vector space V with a basis B
- (a) The coordinate vector of any vector v in V is in \mathbb{R}^n . T
- (b) A subspace of V is a subset of V that contains a zero vector and is closed under the operation of addition
- (c) The set of nonzero vectors in V is a subspace of V
- (d) None
- (4) For any vector space V,
- (a) If V is finite-dimensional, then V is a subspace of \mathbb{R}^n for some positive integer n
- (b) If V is infinite-dimensional, then every infinite subset of V is linearly independent
- (c) If V is finite-dimensional, then no infinite subset of V is linearly independent. T
- (d) None
- (5) An $n \times n$ matrix A is invertible if
- (a) The columns of A are li
- (b) The rows of A are li
- (c) $N(A) = \{0\}$
- (d) all of the above. T

- (6) Let S be a finite subset of a subspace W of \mathbb{R}^n . Then S is a basis for W if
- (a) S is linearly independent
- (b) S spans W
- (c) every vector in W is a linear combination of vectors in S
- (d) None. T
- (7) Suppose that W is a subspace of \mathbb{R}^n . Then
- (a) the dimension of W is greater than n
- (b) every basis of \mathbb{R}^n contains a basis of W
- (c) every linearly independent subset of W has at most n vectors. T
- (d) None
- (8) One of the following is not a subspace in the corresponding space
- (a) $S = \{f \in C(R) : f(1) = 0\}, V = C(R)$
- **(b)** $S = \{A \in R^{2 \times 2} : a_{11} = 0\}, V = R^{2 \times 2}$
- (c) $S = \{v = (x, y) \in R^2 : x + y = 1\}, V = R^2$. T
- (d) $S = \{v = (x, y) \in R^2 : x + y = 0\}, V = R^2$
- (9) For an finite dimensional vector space V,
- (a) every infinite subset of V spans V
- (b) every infinite subset of V is linearly independent.
- (c) every finite subset of V can not span V.
- (d) None. T

(10) The dimension of the null space of
$$\begin{pmatrix} 1 & 1 & 2 & 1 & 4 \\ 2 & -1 & 2 & -1 & 6 \\ 3 & 0 & 4 & 0 & 10 \end{pmatrix}$$
 is

- **(a)** 0
- **(b)** 1
- (c) 2
- (d) 3. T

- (11) One of the following set of vectors are linearly independent
- **(a)** (1, 1, 2, 1, 4), (2, 2, 4, 2, 8)
- **(b)** (1, 1, 2, 1, 4), (2, -1, 2, -1, 6), (0, 0, 0, 0, 0)
- (c) $x, 1, x^2 + 1$. T
- (d) (1,2,3), (0,1,0), (0,0,1), (1,1,1)

(12) The dimension of the subspace $S = \{(a + b + 2c, a + 2b + 4c, b + 2c)^T, a, b, c \in R\}$ is

- **(a)** 4
- (b) 1
- (c) 2. T
- (d) 3
- (13) A basis for the vector space spanned by $1 x x^2$, $1 + x + x^2$, 2 x, 1 x from this set of vectors is
- (a) $1 x x^2$, $1 + x + x^2$, 2 x. T
- (b) $1 x x^2, 1 + x + x^2$
- (c) $1-x-x^2, 1+x+x^2, 2-x, 1-x$
- (d) $1 x x^2, 1 x$

Q3 (12 points):(a) If U, W are subspaces of a vector space V. Show that U ∩ W is a subspace of V
1.0 ∈ U ∩ W, since 0 ∈ U, and 0 ∈ W. So U ∩ W ≠ φ. (2 points)
2. Let x, y ∈ U ∩ W. Then x, y ∈ U, and x, y ∈ W. since U, W are subspaces of V, so x + y ∈ U, and x + y ∈ W. So, x + y ∈ U ∩ W. (2 points)
3. Let x ∈ U ∩ W, α ∈ R. So x ∈ U, and x ∈ W, α ∈ R. Since U, W are subspaces of V, so αx ∈ U, and αx ∈ W. So, αx ∈ U ∩ W. (2 points)
so, U ∩ W is a subspace of V

(b) Let $S = \{(0, a)^t : a \in R\}$. Show that S is a subspace of R^2 .

 $1.0 \in S$, by taking a = 0. So $S \neq \phi$. (2 points)

2. Let $x, y \in S$, say, $x = (0, a)^t$, $y = (0, b)^t$: $a, b \in R$. Then $x + y = (0, a + b)^t$: $a + b \in R$, and so $x + y \in S$. (2 points)

3. Let $x = (0, a)^t$: $a \in R, \alpha \in R$. So $\alpha x = (0, \alpha a)^t \in S$. So, S is a subspace of R^2 .. (2 points)

Q4: (15 points)

- 1. Let $V = P_3$, and let $U = \{f \in V : f(0) = f(1) = 0\}$. Find a basis for ULet $U = \{f \in V; f(x) = ax^2 + bx + c, a, b, c \in R, f(0) = f(1) = 0\}$. So, c = 0, and a + b + c = 0, so b = -a.(3 points). Thus, $U = \{ax^2 - ax, a \in R\}$. So a basis for U is $x^2 - x$. (2 points)
- 2. Let $V = R^{2 \times 2}$, and let $S = \{A \in V : A^t = A\}$. Find a basis for S. $S = \{A \in V : A^t = A\}, A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$. (2 points) A basis for S is $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.(3 points)
- 3. Let $V = P_2$, B = [1 x, 2 + x], F = [1 + 2x, 2 3x]. Find the transition matrix S from B into F

 U_1 the transition matrix from B = [1-x, 2+x]intoE = [1, x] is $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$. (2 points) U_2 the transition matrix from F = [1+2x, 2-3x]intoE = [1, x] is $\begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}$. (2 points) So the transition matrix from B into F is $U = U_2^{-1}U_1 = \frac{1}{7}\begin{pmatrix} 1 & 8 \\ 3 & 3 \end{pmatrix}$. (1 points) Or $U = ([1-x]_F, [2+x]_F)$ (1 points), (2 points) $[1-x]_F, [2+x]_F$ (2 points)

Q5: (10 points)

1. Let A be an $m \times n$ matrix with $N(A) \neq \{0\}$. If the system Ax = b is consistent, prove that Ax = b has infinitely many solutions.

Since $N(A) \neq \{0\}$, so Ax = 0 has a free variable and so Ax = b has a free variable. (3 points) And since it is consistent, so it has infinitely many solutions. (2 points)

Or, the solutions of Ax = b are of the form $x_0 + tz, t \in R$, where x_0 is a solution of Ax = b, and $z \in N(A)$

2. Let V = R be the set of real numbers with usual addition and multiplication. Show that the only subspaces of V are $\{0\}$, and R.

Let $S \neq \{0\}$. So there exists $x \in S, x \neq 0$ (2 points). So $\frac{1}{x} \in R$, (1 points) and so $\frac{1}{x}x = 1 \in S$ (1 points). So if $a \in R$, then $a.1 = a \in S$. (1 points). So S = R